Tepelné Motory

Co je to vlastně motor? Strohá definice by mohla znít takto: hnací stroj umožňující přeměnu určitého druhu přiváděné energie na energii mechanickou. Podle základních konstrukčních znaků se motory dělí na pístové(spalovací motory),vznětové,zážehové a parní motory, rotační (parní a vodní turbína většina elektromotorů) a reaktivní (proudové motory, raketové motory). Podle druhu přiváděné energie se motory dělí na tepelné (parní a plynová turbína, spalovací motory), hydraulické (vodní turbíny, hydromotory), elektrické (elektromotory), pneumatické.
Dnes nejrozšířenějším typem motoru je motor s vnitřním spalováním paliva, u něhož se tepelná energie uvolňuje přímo v pracovním prostoru motoru. Spálením paliva dochází k rozpínání plynů, které tlačí na píst ve válci a uvádějí ho do pohybu. Přímočarý vratný pohyb pístu se převádí klikovým mechanismem na rotační pohyb klikové hřídele, jenž pohání kola. Podle druhu paliva rozeznáváme motory benzínové, plynové a naftové.
Spalovací motor vznikl v 19. století jako výsledek snahy inženýrů o nalezení náhrady za parní energii
Vznětové motory
Vynálezcem je Rudolf Diesel Nápad mu vnukla tzv. malajská trubice, což je vlastně dobře těsnící trubička s pístem na jejímž dně je hořlavá látka. Stlačením pístu vzniká v trubici velký tlak a vzduch se rychle zahřeje natolik, že se látka na dně vznítí. Takovému jevu se říká kompresní zapalování.
Princip vznětového motoru:
Do stlačeného rozžhaveného vzduchu se vstříkne hořlavá směs, která se okamžitě zapálí. Pak následuje vypuštění zplodin a nasátí nového vzduchu, který se opět stlačí.
Diesel si nechal svůj vynález patentovat a zakrátko ohromně zbohatl. Jako palivo zkoušel olej na svícení nebo uhelný prach, prostě levné zdroje. Každá hořlavá látka se vznítí při takovém tlaku a teplotě. Nakonec nejlepší výsledky zaznamenal u nafty a tak se s malými obměnami používá až dodnes.
První velkou podporou pro dieselové motory se stala továrna na výrobu kamionů a těžkých dopravních strojů značky MAN, která sídlí v Ausburgu v Německu. Obrovská přednost dieselových motorů spočívá v jejich nejlepší tažné síle v nízkých otáčkách, což je velmi výhodné pro přepravu těžkého nákladu na velké vzdálenosti. Další neméně velká výhoda dieselových motorů je v jejich účinnosti. Pro porovnání motory, kterými byly moháněny vlaky do té doby měly účinnost okolo 10%. Rudolf Diesel počítal s tím, že jeho motory budou využívat palivo na 73 %, bohužel to byly jen teorie a přání. V době svého vynalezení měly diesely účinnost okolo 20 %, dnes je to dokonce až 40 %.Pro zajímavost:
V Grande Motori, továrně na dieselové motory v italském Terstu se vyrábí třípatrová monstra, tzv. katedrály, které mají až 50-ti procentní účinnost! Ty však mají při dvoutaktním osmiválci výkon 24.000 koňských sil a jejich rozměry se pohybují asi okolo 40 m na délku, 8 m na výšku a 10 m na šířku. Uvědomme si, jak obrovské musely být rozměry pístů, když výše uvedená čísla byla jen rozměry silného pláště. Také výbuchy, které uvnitř probíhaly asi nebyly žádnou legrací. A spotřeba jakbysmet.
Zážehové motory
Rozlišujeme je na dvoutaktní a čtyřtaktní. Počet dob ne vždy závisí na počtu válců, neboť například u Wartburgu můžeme najít motor s třemi válci, který pracuje na dvě doby. Je to nešťastné řešení protože tento motor je méně ekonomický a ekologický než jeho čtyřválcoví kolegové, kteří většinou pracují ve svých čtyřech dobách. Můžeme však také narazit na jednoválec (např. motorové pily roku 1926 vynalezena Andreasem Stihlem., sekačky,…) nebo také šesti, osmi, dvanácti, šestnácti a dokonce i čtyřiadvacetiválec. Válce vždy pracují na čtyři doby a jen si mezi sebou rozdělí čas, takže například u čtyřiadvacetiválce se nachází vždy šest pístů v jedné fázi najednou.
Jako palivo zde poslouží benzin. U čtyřtaktů je benzin bez příměsí, ale v benzinu pro dvoutakty musí být obsaženo olovo.
Po druhé světové válce se začal dvoutaktní motor ve velkém vyrábět ve finančně zruinovaném Německu, kde se za čas díky němu opět zvedla ekonomická situace. Začali jej montovat do legendárních Trabantů. Jen tak pro zajímavost na rozebrání Trabantu potřebujeme dohromady pět klíčů, motor vyndáme za 20 minut a lehce ho uzvedneme v rukou.
Parní motor
Parní stroj je jedním z vynálezů, který významně ovlivnil vývoj průmyslu a civilizace. Devatenácté století je nazýváno stoletím páry, ale první parní stroje se objevili už ve století osmnáctém.
První průmyslově využitelný parní stroj postavil anglický vynálezce Thomas Newcomen (1663-1729) roku 1712. Práce na jeho konstrukce trvala deset let. Tento stroj byl určen pro vysávání vody ze zatopených uhelných dolů ve střední Anglii.
Pára z kotle vstoupila do válce a vytlačila píst nahoru. Přívod páry se pak uzavřel a do válce vstřikovaná studená voda způsobila kondenzaci páry. Vytvořil se tak podtlak a atmosférický tlak stlačil píst zpátky dolů. Pohyb pístu se pomocí ojnice přenášel na vahadlo, které svými kyvy rozpohybovalo čerpadlo. Vzduch a sražená voda se z válce odváděla trubkou.
Parní turbína
V parním stroji pára pohybuje pístem a pomocí ojnice a klikové hřídele je takto vzniklá energie převáděna na samotný mechanismus. Část energie se tudíž spotřebovala k pohonu těchto součástí. Mnohem efektivnější by ale bylo, kdyby tlak páry mohl otáčet koly bezprostředně, podobně jako dopadající voda roztáčí mlýnská kola. Potíž byla však v tom, že kola musela mít stálou vysokou rychlost, aby měl parní stroj dobrý výkon.
Tento problém vyřešil vynález parní turbíny z roku 1884, na které se podíleli Angličan Charles Parsons a Švéd C.G.Laval Zkonstruovali soustavu kol s lopatkami, na něž dopadá pára a roztáčí je. Kola vzdálenější od zdroje páry jsou větší a kola, která jsou zdroji páry bližší, jsou menší. Potřebné rychlosti dosahuje pára expanzí v zúženém průtokovém průřezu. Tlak a teplota páry při expanzi stejně jako u parního stroje klesají a pára se ochlazuje.
Už první parní turbína se otáčela rychlostí 18 000 otáček za minutu a další typy byly ještě výkonnější. Parní turbíny byly mnohem účinější než parní stroje a jejich provoz byl levnější, což je předurčilo k rozsáhlému použití. Nahradili parní stroje v lodní dopravě a dodnes zůstává pára pohánějící turbíny důležitým prvkem při výrobě elektrické energie.
Proudový motor
Reaktivní motor vyvozující tažnou sílu reakčním účinkem zplodin hoření a vzduchu, které tryskají ze spalovací turbíny. Její výkon je využit k pohonu ventilátorů, dmychadla a kompresoru, jež vhánějí vzduch do spalovací komory. Tyto motory mají obrovskou sílu, výkon a účinnost, ale také spotřebu a jsou veliké a hlučné. A právě pro tyto záporné vlastnosti se naprosto nehodí k pozemním účelům (velké nádrže, tlumení), na druhé straně jsou však tím nejlepším dosud známým řešením pro leteckou dopravu, zejména civilní, kde je nejdůležitějším požadavkem bezpečnost. Prvními proudovými letadly byly anglický Gloster Meteor, americký Shooting Star a německý Messerschmitt. Původně jednoproudé motory jsou v současnosti nahrazovány výkonnějšími, účinějšími a méně hlučnějšími motory dvouproudými.
Jedněmi z nejproslulejších výrobců nejen leteckých proudových motorů jsou i německá automobilka BMW a tradiční britský výrobce luxusních automobilů Rolls-Royce.

Raketový motor
Startující raketa se po startu hned neodlepí od země, což je dáno tím, že tah raketových motorů přemáhá zpočátku hlavně hmotnost stroje. Protože se však nádrže na palivo se stoupáním rakety odlehčují, můžeme vidět, jak postupně nabírá rychlost. Její rychlost se stále zvětšuje až dosáhne rychlosti nutné k překonání zemské přitažlivosti. Rakety musí mít motory pracující i ve vzduchoprázdnu. Tyto motory jsou proto založeny na jiném principu než reaktivní motory letadel, které potřebují atmosferický kyslík. Rakety tedy nemají jen zásoby paliva, ale také zásoby kyslíku většinou v tekuté formě, který se skladuje při velmi nízkých teplotách. Zásoby kyslíku účinkují jako zápalná směs. Palivo a zápalná směs se nazývají propergoly-raketová paliva. Jsou-li pevné, znamená to, že jde o směs připravenou již před použitím, jsou-li tekuté, veze si je raketa v oddělených zásobnících. Moderní rakety mají většinou raketové motory na kapalné palivo, které se dá lépe ovládat než tuhá paliva. Palivem je často letecký benzín. Motory na pevné palivo se používají u pomocných raketových motorů, které se po dosažení potřebné rychlosti odhazují.
Dva startovací motory ( SRB - solid rocket booster ) slouží jako hlavní pohon pro start raketoplánu z rampy až do výšky 45,7 km. Tyto dva SRB vybavené výkyvnými tryskami nesou celou váhu družicového stupně a externí nádrže. Každý SRB unese maximální váhu 1500 tun a vyvíjí tak při vzletu tah 11,8 MN. Jsou zapnuty při vzletu teprve několik sekund potom, co je zajištěn pohon SSME motorů. Doba jejich funkce činí 120 s, poté se oddělí od raketoplánu a na padácích se bezpečně snášejí do moře, odkud jsou vyloveny a připraveny k dalšímu použití. Jsou to první motory poháněny pevnou látkou určeny k opětnému použití a jsou také největšími motory svého druhu. Každý má délku 45,46 m a průměr 3,71 m.Součástí každého SRB jsou motor, struktůra, separační systémy ( výbušné šrouby, které oddělují po 120 s SRB od externího tanku ), operační letové systémy, sestupové bezpečnostní padáky, pyrotechnika a pohonné vektorové kontrolní systémy.Jeden SRB bez paliva váží cca 90 T, palivo samotné 500T , což znamená, že SRB, který je připravenk odletu váží 590 tun. SRB používají jako palivo TPH ( polybutadienakrylát-hliník-chloristan amonný ). Palivo je ve tvaru 11-ti cípé hvězdy, která se proměnuje ve dva osekané kužele. Tato sestava dodává raketoplánu velmi vysoký pohon při startu a po 50-ti sekundách se redukuje na třetinu, aby se vozidlo vyvarovalo nadměrnému namáhání během maximálního přetížení.

Hodnocení referátu Tepelné Motory

Líbila se ti práce?

Podrobnosti

  28. květen 2008
  2 897×
  1494 slov

Komentáře k referátu Tepelné Motory